Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Am J Respir Crit Care Med ; 204(12): 1379-1390, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1430274

ABSTRACT

Rationale: Alteration of human respiratory microbiota had been observed in coronavirus disease (COVID-19). How the microbiota is associated with the prognosis in COVID-19 is unclear. Objectives: To characterize the feature and dynamics of the respiratory microbiota and its associations with clinical features in patients with COVID-19. Methods: We conducted metatranscriptome sequencing on 588 longitudinal oropharyngeal swab specimens collected from 192 patients with COVID-19 (including 39 deceased patients) and 95 healthy controls from the same geographic area. Meanwhile, the concentration of 27 cytokines and chemokines in plasma was measured for patients with COVID-19. Measurements and Main Results: The upper respiratory tract (URT) microbiota in patients with COVID-19 differed from that in healthy controls, whereas deceased patients possessed a more distinct microbiota, both on admission and before discharge/death. The alteration of URT microbiota showed a significant correlation with the concentration of proinflammatory cytokines and mortality. Specifically, Streptococcus-dominated microbiota was enriched in recovered patients, and showed high temporal stability and resistance against pathogens. In contrast, the microbiota in deceased patients was more susceptible to secondary infections and became more deviated from the norm after admission. Moreover, the abundance of S. parasanguinis on admission was significantly correlated with prognosis in nonsevere patients (lower vs. higher abundance, odds ratio, 7.80; 95% CI, 1.70-42.05). Conclusions: URT microbiota dysbiosis is a remarkable manifestation of COVID-19; its association with mortality suggests it may reflect the interplay between pathogens, symbionts, and the host immune status. Whether URT microbiota could be used as a biomarker for diagnosis and prognosis of respiratory diseases merits further investigation.


Subject(s)
COVID-19/microbiology , COVID-19/mortality , Microbiota , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/mortality , Adult , Aged , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Prognosis , SARS-CoV-2
3.
J Genet Genomics ; 47(10): 610-617, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-1002756

ABSTRACT

In response to the current coronavirus disease 2019 (COVID-19) pandemic, it is crucial to understand the origin, transmission, and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which relies on close surveillance of genomic diversity in clinical samples. Although the mutation at the population level had been extensively investigated, how the mutations evolve at the individual level is largely unknown. Eighteen time-series fecal samples were collected from nine patients with COVID-19 during the convalescent phase. The nucleic acids of SARS-CoV-2 were enriched by the hybrid capture method. First, we demonstrated the outstanding performance of the hybrid capture method in detecting intra-host variants. We identified 229 intra-host variants at 182 sites in 18 fecal samples. Among them, nineteen variants presented frequency changes > 0.3 within 1-5 days, reflecting highly dynamic intra-host viral populations. Moreover, the evolution of the viral genome demonstrated that the virus was probably viable in the gastrointestinal tract during the convalescent period. Meanwhile, we also found that the same mutation showed a distinct pattern of frequency changes in different individuals, indicating a strong random drift. In summary, dramatic changes of the SARS-CoV-2 genome were detected in fecal samples during the convalescent period; whether the viral load in feces is sufficient to establish an infection warranted further investigation.


Subject(s)
COVID-19/prevention & control , Feces/virology , Genome, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , Convalescence , Gene Expression Profiling/methods , Genomics/methods , Haplotypes , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Pandemics , Polymorphism, Single Nucleotide , SARS-CoV-2/physiology , Time Factors
4.
Clin Infect Dis ; 71(15): 713-720, 2020 07 28.
Article in English | MEDLINE | ID: covidwho-909244

ABSTRACT

BACKGROUND: A novel coronavirus (CoV), severe acute respiratory syndrome (SARS)-CoV-2, has infected >75 000 individuals and spread to >20 countries. It is still unclear how fast the virus evolved and how it interacts with other microorganisms in the lung. METHODS: We have conducted metatranscriptome sequencing for bronchoalveolar lavage fluid samples from 8 patients with SARS-CoV-2, and also analyzed data from 25 patients with community-acquired pneumonia (CAP), and 20 healthy controls for comparison. RESULTS: The median number of intrahost variants was 1-4 in SARS-CoV-2-infected patients, ranged from 0 to 51 in different samples. The distribution of variants on genes was similar to those observed in the population data. However, very few intrahost variants were observed in the population as polymorphisms, implying either a bottleneck or purifying selection involved in the transmission of the virus, or a consequence of the limited diversity represented in the current polymorphism data. Although current evidence did not support the transmission of intrahost variants in a possible person-to-person spread, the risk should not be overlooked. Microbiotas in SARS-CoV-2-infected patients were similar to those in CAP, either dominated by the pathogens or with elevated levels of oral and upper respiratory commensal bacteria. CONCLUSION: SARS-CoV-2 evolves in vivo after infection, which may affect its virulence, infectivity, and transmissibility. Although how the intrahost variant spreads in the population is still elusive, it is necessary to strengthen the surveillance of the viral evolution in the population and associated clinical changes.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus , Pandemics , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome , Betacoronavirus , COVID-19 , Genetic Variation , Genomics , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL